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We propose a method to detect the geometric phase produced by the Dirac-type band structure of a
triangular-lattice photonic crystal. The spectrum is known to have a conical singularity �=Dirac point� with
a pair of nearly degenerate modes near that singularity described by a spin-1

2 degree of freedom
�=pseudospin�. The geometric Berry phase acquired upon rotation of the pseudospin is in general obscured by
a large and unspecified dynamical phase. We use the analogy with graphene to show how complementary
media can eliminate the dynamical phase. A transmission minimum results as a direct consequence of the
geometric phase shift of � acquired by rotation of the pseudospin over 360° around a perpendicular axis. We
support our analytical theory based on the Dirac equation by a numerical solution of the full Maxwell
equations.
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I. INTRODUCTION

Geometric phases �also known as Berry phases� typically
appear in optics and quantum mechanics when a spin degree
of freedom is transported along a closed orbit.1 The geomet-
ric phase is given by the product of the enclosed solid angle
and the spin, independently of the duration of the orbit
�hence the adjective “geometric”�.

The spin is usually 1
2 in the quantum-mechanical context

when the spin is the electron spin. In the optical context, the
spin corresponds to the light polarization and may be either 1

2
or 1 depending on whether the photon momentum is cycled
or kept fixed.2 An early experimental detection of the spin-1
geometric phase of a photon was the measurement of the
rotating linear polarization in a twisted optical fiber.3 For
electrons, the recently observed4,5 anomalous quantization of
Landau levels in graphene is a direct manifestation of the
geometric phase of � acquired by a pseudospin-1

2 , which
rotates over 360° in a cyclotron orbit �since the pseudospin is
tangential to the velocity�.

The graphene example is unusual because the spin-1
2 that

is rotating is not the true electron spin but an orbital degree
of freedom with the same SU�2� symmetry emerging from
the motion of the electron in the periodic potential of the
carbon atoms. Such a pseudospin is not tied to the fermionic
statistics of the electrons and so it might also manifest itself
in the bosonic optical context.

The optical analog of graphene is a photonic crystal with
a two-dimensional �2D� triangular-lattice structure. Haldane
and Raghu6 showed that a pair of almost degenerate Bloch
waves ��1 ,�2��� near a K point of the Brillouin zone can
be represented by a pseudospin, coupled to the orbital mo-
tion. The wave equation,

H� = ��, � =
� − �D

vD
, �1a�

H = − i�x
�

�x
− i�y

�

�y
+ ��z, �1b�

is the 2D Dirac equation of a spin-1
2 particle with mass �

�nonzero if inversion symmetry is broken�.6 The resulting
dispersion relation,

�2 = kx
2 + ky

2 + �2, �2�

is reduced to a double cone in the case �=0 of a perfect
lattice with a degeneracy at the frequency �D of the Dirac
point. The slope d� /dk=vD is the frequency-independent
group velocity. The upper cone �frequencies ���D� corre-
sponds to the conduction band in graphene and the lower
cone ����D� to the valence band. Several analogies be-
tween the electronic and optical transport properties near the
Dirac point have been analyzed.6–9 What is missing is an
optical way to directly observe the geometric phase due to
the rotating pseudospin, analogous to the “smoking gun”
found in the electronic cyclotron motion.4,5

A direct analogy is problematic because there exists no
optical cyclotron motion. One can imagine other ways to
have a photon execute a closed orbit but the large and un-
specified dynamical phase is likely to obscure the geometric
phase. Here we show how complementary media10 can be
used to eliminate the dynamical phase, resulting in a trans-
mission minimum that is a direct consequence of the � phase
shift acquired by the rotating pseudospin. We support our
argument by an analytical solution of the Dirac equation and
by a numerical solution of the full Maxwell equations.

II. CALCULATION OF THE GEOMETRIC PHASE

The system that can isolate the geometric phase from the
dynamical phase is illustrated in Fig. 1 �lower two panels�. It
is the optical analog of the p-n junction in graphene studied
in Ref. 11. In graphene, complementary media are formed
when the Fermi level crosses from the conduction band to
the valence band.12 For the optical analog, we introduce a
�smooth� step in the Dirac frequency at x=0 so that �D
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decreases from �D
− for x�0 to �D

+ for x�0. The Dirac fre-
quency can be changed, for instance, by varying the radius of
the dielectric rods that form the photonic crystal. Unlike in
the electronic case, a shift of �D is generally accompanied by
a shift of vD from vD

− to vD
+ . The corresponding shift in the

parameter � is from �− to �+. We define the complementarity
frequency �c such that

�c − �D
+

vD
+ = −

�c − �D
−

vD
− ⇔ �+ = − �−. �3�

As illustrated in Fig. 2, waves of frequency �c have the same
wave vector in absolute value in the two regions x�0 and
x�0 but of opposite orientation relative to the group veloc-
ity �since k and d� /dk have the same sign for x�0, and

opposite sign for x�0�. Dynamical phase shifts accumulated
in the two regions thus cancel, leaving only the geometric
phase from the rotation of the pseudospin.

We calculate the geometric phase for the closed orbit
shown in Fig. 1 �top panel�. Notice the negative
refraction12,13 at the interface x=0 where the orbit tunnels
between the upper and lower cones of the dispersion relation
�Klein tunneling�. The component ky =q of the wave vector
parallel to the interface is conserved �because of translational
invariance in the y direction� while the component kx=k
changes sign when x�−x. The orbit is reflected at the turn-
ing points x	 by a mass term ��x�. We require ��−x�
=��x� and ��−x�=−��x�. Because ��x� and �x��−x� are
then both solutions of Eq. �1� �for a given y dependence

eiqy�, it follows that the transfer matrix M�x ,x�� through the
photonic crystal �defined by ��x�=M�x ,x����x��� satisfies

M�x,0��xM�0,− x� = �x. �4�

This is a generalized complementarity relation14 �the original
complementarity relation10 would have the unit matrix in
place of �x�.

A trajectory description is applicable if the variations of
�, �D, and vD with x are smooth on the scale of the wave-
length. The spatial derivatives in Eq. �1� may then be re-
placed by the local wave vector, −i� →k �measured relative
to the K point�. The solution is

� = C−1/2�� + �

k + iq
� � � cos��/2�

ei� sin��/2�
� , �5�

with k determined from � ,� ,q through Eq. �2� and C= ��
+��2+ �k+ iq�2 a normalization constant. The angles � ,� de-
fine the Bloch vector B= �cos � sin � , sin � sin � , cos ��,
representing the direction of the pseudospin on the Bloch
sphere. The rotation of the Bloch vector along the closed
orbit is indicated in Fig. 3.

The geometric phase =� /2 is one half the solid angle
� subtended at the origin by the rotating Bloch vector.1 We
distinguish three contributions to �: a contribution �− from
the trajectory in the lower cone of the dispersion relation
�x�0�, a contribution �+ from the trajectory in the upper
cone �x�0�, and a contribution �K from Klein tunneling
between the two cones �through the interface x=0, indicated
by dashed lines�. The Bloch vector that sweeps out �	

FIG. 1. �Color online� Lower two panels: Schematic �not to
scale� of the triangular-lattice photonic crystal �with the cross sec-
tion of the dielectric rods shown in green�, and plot of the corre-
sponding profiles ��x� and ��x�. The two regions x�0 and x�0
form complementary media if the rescaled frequency � is an odd
function of x while the mass term � is an even function of x. The
top panel shows a closed orbit in the photonic crystal with the
dashed lines indicating tunneling through the region of imaginary
wave vector.

FIG. 2. Left panel: Schematic of the conical dispersion relations
near a K point in the region x�0 �solid lines� and x�0 �dashed
lines�. The horizontal dotted line indicates the frequency �c, given
by Eq. �3�, at which the two regions form complementary media.
Right panel: Hexagonal first Brillouin zone of the triangular lattice.
The K and K� points are indicated by filled and open dots, respec-
tively. Only the K points are excited in the geometry of Fig. 1.

FIG. 3. Rotation of the Bloch vector B along the closed orbit of
Fig. 1 with the corresponding points numbered. The full rotation
sweeps out a solid angle of 2�, producing a Berry phase of �.
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is given by B= �k ,q ,�� /�. It follows from k�−x�=−k�x�,
��−x�=��x�, and ��−x�=−��x� that �+=−�− so the two
contributions from the upper and lower cones cancel.

The contribution from Klein tunneling between the points
	�x has imaginary k= i�. The sign of � is positive when
tunneling toward positive x �from the lower cone to the up-
per cone� and negative when tunneling toward negative x
�from upper to lower cone� to ensure a decaying wave 
e−�x.

The Bloch vector

B = ��2 + q2�−1	 0

�� + q�

�� − �q

 , �6�

rotates in the y-z plane from B+ to B− through the positive z
axis �tunneling from upper to lower cone� and back to B+
through the negative z axis �tunneling from lower to upper
cone�. The value of B	 of the Bloch vector at points 	�x
follows from Eq. �6� with �=0,

B	 =
1

��	�x�	 0

q

��	�x�

 ⇒ B− = − B+. �7�

The resulting 360° rotation of B in the y-z plane sweeps out
a solid angle �K=2� so that the total geometric phase ac-
quired in the closed orbit of Fig. 1 is =�. �Equation �7�
describes the general case of nonzero � while Fig. 3 is for
the special case of �=0.�

III. DESTRUCTIVE INTERFERENCE
OF PARTIAL WAVES

The Berry phase of � suppresses the formation of a bound
state at the complementarity frequency �c. To show this, we
demonstrate the destructive interference of partial waves that
return to the point of origin after multiple tunnel events. A
more formal proof of the absence of a bound state at �c is
given in the Appendix.

The scattering problem is illustrated in Fig. 4. Partial-
wave amplitudes are labeled An for x�0 and Bn for x�0.
The wave amplitudes at a tunnel event �black circle� are
related by a unitary scattering matrix,

�An+1

Bn
� = S� An

Bn+1
�, S = �r t�

t r�
� . �8�

The phase shift of � acquired in a single closed loop
An→Bn→An implies

arg�t� + arg�t�� = � ⇒ t� = − t�. �9�

Unitarity of S then requires that the scattering matrix of a
tunnel event is of the form

S = �r − t�

t r� �, �r�2 + �t�2 = 1. �10�

An initial wave amplitude An
initial interferes with the sum

An
final of partial-wave amplitudes that return after

different sequences of tunnel events. Each sequence

An→¯→Bn→¯→An includes Bn exactly once. We write
An

final=T �TAn
initial with T as the total transmission amplitude

from An
initial to Bn and T � as the total transmission amplitude

from Bn to An
final.

For T we can construct a Dyson equation �see Fig. 4�:

T = t + r�Tr + r�Tt�Tr + r�T�t�T�2r + ¯

=t +
rr�T

1 − t�T
. �11�

Similarly, we have

T � = t� +
rr�T �

1 − tT �
. �12�

The two Dyson equations can be combined into a single
equation for the variable �=T / t=T � / t�,

� = 1 +
rr��

1 − tt��
. �13�

At this point we invoke the Berry phase relation �Eq. �9��,
which together with unitarity implies tt�=−�t�2=rr�−1. The
Dyson Eq. �13� then reduces to

�2 = 1/�t�2. �14�

Regardless of the ambiguity in the sign of �, we can con-
clude that

T �T � �2t�t = − 1 ⇒ An
final = − An

initial. �15�

The end result is therefore a phase shift of � between An
final

and An
initial without any change in the magnitude. The destruc-

tive interference of An
final and An

initial, which prevents the for-
mation of a bound state at frequency �c, is a direct conse-
quence of the phase shift of � acquired in a single closed
loop even if the weight �t�2 of a single loop is small.

FIG. 4. Sequence of partial-wave amplitudes An and Bn, pro-
duced by tunnel events �black circles� at the interface x=0 between
two complementary media. Panel �a� shows a top view of the mul-
tiply scattered rays while panel �b� shows a more abstract represen-
tation. Panels �c� and �d� illustrate the construction of the total
transmission amplitude T and of the Dyson equation that it obeys.
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IV. DETECTION OF THE DESTRUCTIVE INTERFERENCE

To detect the destructive interference, we propose a mea-
surement of the transmission probability T of resonant tun-
neling of a plane wave through the photonic crystal.15 If the
confinement at x= 	L is strong, the transmission probability
will have narrow resonances at the frequencies of the quasi-
bound states. The destructive interference at �=�c will pro-
duce a transmission minimum for any L. This is unlike usual
Fabry-Perot resonances, which would shift with L so that
there would not be a systematic minimum or maximum at
any particular frequency.

For a well-developed conical band structure, we take the
TE polarization �magnetic field parallel to the dielectric
rods�. The parameters of the photonic crystal are summarized
in a footnote.16 A 7% increment of the radius of the rods �at
fixed lattice constant a� shifts �D and vD by about 5% and
15%, respectively. The mass term at x= 	L is created by
breaking the inversion symmetry through the addition of an
extra rod in the unit cell �see Fig. 1�. We have solved the full
Maxwell equations with the finite-difference time-domain
method17 using the MEEP software package.18 The wave vec-
tor k= �k ,q� is the displacement of the wave vector of an
incident plane wave from the K point at wave vector K
= 2

3�a−1��3,1�. There are two inequivalent K points in the
hexagonal first Brillouin zone �see Fig. 2� and we excite a
single one by orienting the lattice relative to the incident
plane wave as indicated in Fig. 1. �The angle of incidence is
spread over a narrow interval ���2.3° around �
=arcsin�cKy /�c�.� Results are shown in Fig. 5 �solid curves�
for two values of L.

As an independent test on the accuracy of the numerical
calculations, we have also calculated analytically the trans-
mission probability from the Dirac Eq. �1�, using the
transfer-matrix method of Ref. 7. For simplicity we assumed
in this analytical calculation an ideal coupling between the
plane waves in free space and the Bloch waves in the pho-
tonic crystal. The analytical results are also plotted in Fig. 5
�dotted curves� and are found to agree well with the numeri-
cal results from the Maxwell equations. There are no adjust-
able parameters in this comparison. �The parameters �D, vD,

and � were extracted independently from the band structure,
calculated using the MPB software package.19�

We observe in Fig. 5 a transmission minimum at �c that
does not shift with variations of L. To test our interpretation
of the origin of this minimum, we have broken the comple-
mentarity of the media by inverting the sign of the mass term
at the left end of the crystal. �This can be done by inverting
the position of the extra rod in the unit cell.� For q=0, the
inversion produces an extra phase shift of � that switches the
destructive interference to constructive interference—in
agreement with the observed switch �see Fig. 6� from a trans-
mission minimum to a transmission maximum at �c.

V. CONCLUSION

In conclusion, we have proposed a method to detect the
pseudospin-1

2 geometric phase produced by the Dirac spec-
trum in a photonic crystal. The dynamical phase can be
eliminated by measuring the transmission through comple-
mentary media so that only the � geometric phase remains
and a parameter-independent transmission minimum results
at the complementarity frequency. Our analysis is based on
the Dirac equation, which is an approximate long-
wavelength description, but it is fully supported by an exact
numerical solution of the Maxwell equations in a triangular
lattice of dielectric rods.

The experiment proposed and analyzed here can be seen
as the optical analog of the detection of the geometric phase
acquired during electronic cyclotron motion in graphene.4,5

There is one fundamental difference: In a cyclotron orbit the
� phase shift is produced by 360° rotation of the pseudospin
in the x-y plane of the lattice while in our complementary
media, the rotation is in the perpendicular y-z plane. The
difference shows up in the dependence of the geometric
phase on a mass term ��z in the Dirac equation. A nonzero
mass pushes the pseudospin out of the x-y plane, thereby
reducing the enclosed solid angle and hence reducing the
geometric phase acquired during a cyclotron orbit.20 In the
complementary media, the geometric phase remains equal
to �.

In graphene, the suppression of the density of states at a
p-n junction is analogous to the proximity effect in a normal-
superconductor junction.11 Observation of the optical coun-
terpart presented in this paper would open up the possibility
to study superconducting analogies in nonelectronic systems.
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FIG. 5. Frequency-dependent transmission probability for two
values of L in the case �R=�L of complementary media. The solid
curves show the numerical result from the Maxwell equations while
the dashed curves are calculated analytically from the Dirac equa-
tion. The vertical dashed line indicates the complementarity fre-
quency �c.
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FIG. 6. The same as Fig. 5, for the case �R=−�L when the
complementarity is broken by the mass term.
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APPENDIX: ABSENCE OF A BOUND STATE AT
THE COMPLEMENTARITY FREQUENCY

The demonstration of destructive interference of partial
waves given in Sec. III explicitly shows how the Berry phase
of � prevents the formation of a bound state at the comple-
mentarity frequency �c. A more formal proof, one that does
not rely on the partial-wave decomposition, is given here.

We use again the property that if ��x�eiqy is a solution of
Eq. �1� at �=�c then also �x��−x�eiqy is a solution at the
same frequency. We may therefore take even and odd super-
positions of these two states to form new bound states �	

that satisfy �x�	�0�= 	�	�0�. The photon flux density
through the interface x=0 is

vD�	
� �0��x�	�0� = 	 vD��	�0��2. �A1�

This should vanish for a bound state, which is only possible
if �	�0�=0, meaning that the two regions x�0 and x�0
are decoupled. Any tunnel coupling between the two regions
will result in �	�0��0, preventing the formation of a bound
state at �c.
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